转移学习可以看作是从头开始的数据和计算效率替代培训模型的替代方法。丰富的模型存储库(例如TensorFlow Hub)的出现使从业人员和研究人员能够在各种下游任务中释放这些模型的潜力。随着这些存储库的成倍增长,有效地为手头任务选择一个好的模型变得至关重要。通过仔细比较各种选择和搜索策略,我们意识到,没有一种方法优于其他方法,而混合或混合策略可以是有益的。因此,我们提出了Shift,这是用于转移学习的第一个下游任务感知,灵活和有效的模型搜索引擎。这些属性由自定义查询语言shift-ql以及基于成本的决策者以及我们经验验证的基于成本的决策者启用。受机器学习开发的迭代性质的促进,我们进一步支持对查询的有效递增执行,这需要与我们的优化共同使用时进行仔细的实施。
translated by 谷歌翻译
输入管道,其摄取和转换输入数据,是培训机器学习(ML)模型的重要组成部分。然而,实现有效的输入管道有挑战性,因为它需要推理有关并行性,异步的推理和细粒度分析信息的可变性。我们对谷歌数据中心超过200万毫升工作的分析表明,大量模型培训工作可以从更快的输入数据管道中受益。与此同时,我们的分析表明,大多数工作都不饱和主机硬件,指向基于软件的瓶颈的方向。这些发现的动机,我们提出了水管工,一种用于在ML输入管道中找到瓶颈的工具。管道工使用可扩展和可解释的操作分析分析模型来自动调整Host资源约束下的并行性,预取和缓存。在五个代表性ML管道上,水管工可获得最多46倍的误配置管道的加速。通过自动化缓存,与最先进的调谐器相比,水管工获得超过40%的端到端加速。
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译
Recent work has reported that AI classifiers trained on audio recordings can accurately predict severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection status. Here, we undertake a large scale study of audio-based deep learning classifiers, as part of the UK governments pandemic response. We collect and analyse a dataset of audio recordings from 67,842 individuals with linked metadata, including reverse transcription polymerase chain reaction (PCR) test outcomes, of whom 23,514 tested positive for SARS CoV 2. Subjects were recruited via the UK governments National Health Service Test-and-Trace programme and the REal-time Assessment of Community Transmission (REACT) randomised surveillance survey. In an unadjusted analysis of our dataset AI classifiers predict SARS-CoV-2 infection status with high accuracy (Receiver Operating Characteristic Area Under the Curve (ROCAUC) 0.846 [0.838, 0.854]) consistent with the findings of previous studies. However, after matching on measured confounders, such as age, gender, and self reported symptoms, our classifiers performance is much weaker (ROC-AUC 0.619 [0.594, 0.644]). Upon quantifying the utility of audio based classifiers in practical settings, we find them to be outperformed by simple predictive scores based on user reported symptoms.
translated by 谷歌翻译
Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.
translated by 谷歌翻译
The UK COVID-19 Vocal Audio Dataset is designed for the training and evaluation of machine learning models that classify SARS-CoV-2 infection status or associated respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary participants through the national Test and Trace programme and the REACT-1 survey in England from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2 variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations, and speech were collected in the 'Speak up to help beat coronavirus' digital survey alongside demographic, self-reported symptom and respiratory condition data, and linked to SARS-CoV-2 test results. The UK COVID-19 Vocal Audio Dataset represents the largest collection of SARS-CoV-2 PCR-referenced audio recordings to date. PCR results were linked to 70,794 of 72,999 participants and 24,155 of 25,776 positive cases. Respiratory symptoms were reported by 45.62% of participants. This dataset has additional potential uses for bioacoustics research, with 11.30% participants reporting asthma, and 27.20% with linked influenza PCR test results.
translated by 谷歌翻译
This paper describes the 5th edition of the Predicting Video Memorability Task as part of MediaEval2022. This year we have reorganised and simplified the task in order to lubricate a greater depth of inquiry. Similar to last year, two datasets are provided in order to facilitate generalisation, however, this year we have replaced the TRECVid2019 Video-to-Text dataset with the VideoMem dataset in order to remedy underlying data quality issues, and to prioritise short-term memorability prediction by elevating the Memento10k dataset as the primary dataset. Additionally, a fully fledged electroencephalography (EEG)-based prediction sub-task is introduced. In this paper, we outline the core facets of the task and its constituent sub-tasks; describing the datasets, evaluation metrics, and requirements for participant submissions.
translated by 谷歌翻译
The Predicting Media Memorability task in the MediaEval evaluation campaign has been running annually since 2018 and several different tasks and data sets have been used in this time. This has allowed us to compare the performance of many memorability prediction techniques on the same data and in a reproducible way and to refine and improve on those techniques. The resources created to compute media memorability are now being used by researchers well beyond the actual evaluation campaign. In this paper we present a summary of the task, including the collective lessons we have learned for the research community.
translated by 谷歌翻译
The task of automatic text summarization produces a concise and fluent text summary while preserving key information and overall meaning. Recent approaches to document-level summarization have seen significant improvements in recent years by using models based on the Transformer architecture. However, the quadratic memory and time complexities with respect to the sequence length make them very expensive to use, especially with long sequences, as required by document-level summarization. Our work addresses the problem of document-level summarization by studying how efficient Transformer techniques can be used to improve the automatic summarization of very long texts. In particular, we will use the arXiv dataset, consisting of several scientific papers and the corresponding abstracts, as baselines for this work. Then, we propose a novel retrieval-enhanced approach based on the architecture which reduces the cost of generating a summary of the entire document by processing smaller chunks. The results were below the baselines but suggest a more efficient memory a consumption and truthfulness.
translated by 谷歌翻译
The shift of public debate to the digital sphere has been accompanied by a rise in online hate speech. While many promising approaches for hate speech classification have been proposed, studies often focus only on a single language, usually English, and do not address three key concerns: post-deployment performance, classifier maintenance and infrastructural limitations. In this paper, we introduce a new human-in-the-loop BERT-based hate speech classification pipeline and trace its development from initial data collection and annotation all the way to post-deployment. Our classifier, trained using data from our original corpus of over 422k examples, is specifically developed for the inherently multilingual setting of Switzerland and outperforms with its F1 score of 80.5 the currently best-performing BERT-based multilingual classifier by 5.8 F1 points in German and 3.6 F1 points in French. Our systematic evaluations over a 12-month period further highlight the vital importance of continuous, human-in-the-loop classifier maintenance to ensure robust hate speech classification post-deployment.
translated by 谷歌翻译